Facts about Integration by Parts for Indefinite Integrals	Explanation
$\int u dv = uv - \int v du$	The common Integration by Parts Formula for Indefinite Integrals.
The LIATE Scale	Use this LIATE scale to pick your u and dv . Pick your u to be something higher on this scale and dv to be something
L - Logarithm Function I - Inverse Trigonometric Function $\uparrow u$ A - Algebraic Function (polynomials) T - Trigonometric Function $\downarrow dv$ E - Exponential Function $(e^x \text{ or } 10^x)$	lower on this scale. This is just a guideline; there might be functions where you might not want to use the LIATE scale.
How to compute du where $u = f(x)$?	$du = f'(x) \ dx$
How to compute v where $dv = g'(x) dx$?	$v = \int dv = \int g'(x) dx = g(x)$

- 1. Evaluate $\int x e^x dx$ through the following parts.
 - (a) Use the LIATE scale to assign your u and dv.
 - (b) Find du (the differential of u) and v (antiderivative of dv).
 - (c) Set up the integration by parts formula and find an antiderivative for the integral.

- 2. Evaluate $\int x^2 \ln(x) dx$ through the following parts.
 - (a) Use the LIATE scale to assign your u and dv.
 - (b) Find du (the differential of u) and v (antiderivative of dv).
 - (c) Set up the integration by parts formula and find an antiderivative for the integral.

3. Evaluate $\int e^x \sin(x) dx$ (You will have to use integration by parts twice).

4. Evaluate $\int_0^1 \arcsin(x) dx$.

5. Some additional practice.

1.
$$\int 4x \cos(2 - 3x) dx$$

2. $\int_{6}^{0} (2 + 5x) e^{x/3} dx$
3. $\int x^{2} \cos(3x) dx$
4. $\int t^{7} \sin(2t^{4}) dt$