Facts about Integration by Parts for Indefinite Integrals	Explanation
$\int u d v=u v-\int v d u$	The common Integration by Parts Formula for Indefinite Integrals.
The LIATE Scale L - Logarithm Function I - Inverse Trigonometric Function $\uparrow u$ A - Algebraic Function (polynomials) T - Trigonometric Function $\quad \downarrow d v$ E - Exponential Function (e^{x} or 10^{x})	Use this LIATE scale to pick your u and $d v$. Pick your u to be something higher on this scale and $d v$ to be something lower on this scale. This is just a guideline; there might be functions where you might not want to use the LIATE scale.
How to compute $d u$ where $u=f(x)$?	$d u=f^{\prime}(x) d x$
How to compute v where $d v=g^{\prime}(x) d x$?	$v=\int d v=\int g^{\prime}(x) d x=g(x)$

1. Evaluate $\int x e^{x} d x$ through the following parts.
(a) Use the LIATE scale to assign your u and $d v$.
(b) Find $d u$ (the differential of u) and v (antiderivative of dv).
(c) Set up the integration by parts formula and find an antiderivative for the integral.
2. Evaluate $\int x^{2} \ln (x) d x$ through the following parts.
(a) Use the LIATE scale to assign your u and $d v$.
(b) Find $d u$ (the differential of u) and v (antiderivative of dv).
(c) Set up the integration by parts formula and find an antiderivative for the integral.
3. Evaluate $\int e^{x} \sin (x) d x$ (You will have to use integration by parts twice).
4. Evaluate $\int_{0}^{1} \arcsin (x) d x$.
5. Some additional practice.
6. $\int 4 x \cos (2-3 x) d x$
7. $\int_{6}^{0}(2+5 x) e^{x / 3} d x$
8. $\int x^{2} \cos (3 x) d x$
9. $\int t^{7} \sin \left(2 t^{4}\right) d t$
